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ABSTRACT

This paper deals with the development and analysis of well-posed models and compu-
tational algorithms for control of a class of partial differential equations that describe the
motions of thermo-viscoelastic structures. We first present an abstract “state space” frame-
work and a general well-posedness result that can be applied to a large class of thermo-elastic
and thermo-viscoelastic models. This state space framework is used in the development of
a computational scheme to be used in the solution of an LQR control problem. A detailed
convergence proof is provided for the viscoelastic model and several numerical results are
presented to illustrate the theory and to analyze problems for which the theory is incomplete.
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1. Introduction. During the past few years considerable attention has been de-
voted to the development of smart materials and structures (sce [B}). One approach
to this class of problems is to use shape memory alloys as actuators in active control
designs. These alloys are best described by thermo-mechanical models consisting of
coupled (and nonlinear) hyperbolic and parabolic partial differential equations. The
development of computational algorithms for designing controllers for such systems is
an immensely complex problem and the subject of several ongoing research projects.
In addition to the obvious difficulties related to the nonlinearities. the hasic thermo-
elastic coupling often gives rise to nonstandard mathematical models and leads to
several problems in developing computational algorithms for control. Thercfore. the
computational methods for controlling a linear thermo-elastic system may be viewed
as a first step toward the ultimate nonlinear problem. With this motivation in mind.
we consider the problem of controlling a class of coupled partial differential equations
that describe the linearized motions of a thermo-mechanical structure. The basic
approach is to combine approximation theory with state space modelling to develop
convergent computational algorithms for LQR control designs.
In this paper we consider the questions of well-posedness and convergence of ap-
proximation schemes for a class of abstract linear systems of the form
(1) = Az(t) + Bu(t). 2(0) = 2o (1.1)
on a Hilbert space Z. The main concern of this paper 1s with a general class of partial

functional differential equations (PFDEs) arising in the modeling of viscoelastic and




thermo-viscoelastic systems, for example (see [BCLM], [BMC], [MH]), coupled

cquations of the form

0° J Jd 0 d
ooavitr) = o2 [Tay(t~l)+[rg(3)gy(t+>.:r-)ds

Otz + beu(t) (12)

y(t.z) (1.3)
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J a-
E{O(t .1) = ha;:O(f l)"“ ,000 0[

where y represents displacement and ¢ is the deviation from the reference temperature
0. Equations of viscoelasticity (e.g.. (1.2) with y = 0) have a special structure which
has been used by Fabiano and Ito [FI] to formulate a general well-posedness theoremn

and convergence results. Observe that (1.2) with 4 = 0 can be written as

a? o* 0
Gtzy( r)= 57 [ry(t.:r)-f—/ g(s)y(t+s.r)ds] + b(r)u(t), (1.4)

or. 1n abstract {form. as

i+ A [Ty+/ g(s)y(t—}-s)ds] = f(1), (1.5)

r

where A is a positive definite, self-adjoint, closed linear operator on a Hilbert space
Y. In [FI] Fabiano and [to consider equations of this form with singular kernels
(l.e., g € L'(—7.0)) and establish well-posedness when the state space is taken to be
D(AY2) x Y x LI(—r,0;D(A"?)). In this paper, we also consider equations of the
form (1.5). but the approach we take also applies to the thermo-viscoelastic equations
(1.2) - (1.3) which cannot be written in the form of (1.5).

In Section 2 we develop an abstract framework and a generalized well-posedness

theorem which we apply to the thermo-viscoelastic system (1.2) - (1.3) with zero
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boundary conditions and to the general viscoelastic system given by equation (1.5).

Our approach allows a singular kernel, and 1t also has the advantage that it does not
require explicit knowledge of the domain of A'/? in order to write down the state

/2 is not a differential

space. This property can be useful in apphcations where A
operator. We also remark that our general framework can be applied to certain finite
delay systems similar in form to the infinite delay systems considered by Miller and
Desch in [MD]. Miller and Desch prove well-posedness for a class of equationus in
which the kernel is completely monotonic.

Approximation of such systems generally consists of two steps: first approximate
the spatial variable (e.g.. by means of splines) to reduce the system to a hereditary
differential system on R™. then approximate the “history” or "memory” term (i.e..
the integral term in (1.5)). In this paper we will use a variation introduced by Fabiano
and Ito ([FI}) of the averaging scheme considered by Banks and Burns ([BB]) for
the second stage. The idea of the *"AVE™ scheme is essentially to approximate the
kernel g(s) by a step function: partition [-r,0] into M subintervals and take the
integral average in each subinterval. Fabiano and Ito show that the approximation
scheme converges for an L' kernel using a uniform partition of [—r.0]. but they give
numerical results which indicate that a different partition using a finer mesh near the
singularity at zero yields much faster convergence. In Section 3 we modify the proof

given by Fabiano and Ito for singular kernels and a uniform mesh to include singular

kernels and the non-uniform mesh.




Although we prove convergence in this paper only for the abstract viscoelastic
system, the proof we give can be modified to include the thermo-viscoelastic model.
In Section 4 we give some numerical results comparing the viscoelastic and thermo-
viscoelastic models.

We will use the followiug notation. For a function ¢ € L'(a.b;Z), we denote
by L3(a.b: Z) the set {f € La.b: 2) I IP ) 1F )5 ds < oc}. We denote by the
svmbol H](a.b; Z) the set of all H! functions which vanish at the left end-point of
the interval: te.. H(a.b:Z)={f € H'(a.b: Z)| f(a) =0}. Sinilarly, Hila.0: Z) =
{fe Ha.b:Z)| f(b) =0}. For a function 2 : [~7.a) — X. r.a > 0. the symbol z,
for t € [0.a) represents the function z, : [—7,0] — X defined by r,(s) = z(t+s). I{ 4
is the infinitesimal generator of a Cp semigroup 1(-) on a Hilbert space Z satisfving
IT(t)]j, < Me?'. then we write A € G(M.3). Finally, z, =5 : means that z,

converges strongly to =.

2. Well-Posedness. A standard technique for establishing well-posedness of a
svstem governed by a PFDE is to cast the problem in the form of (1.1) and show
that A generates a Cy semigroup on Z, for example, by means of the Lumer-Phillips

theorem (see [P]). We will use the fcllowing version of this theorem:

THEOREM 2.1. Let A be a closed densely defined linear operator on a Hilbert space
H. If there exists 3 € R such that (Ax,z) < 3(r.z) for all x € D(A). and R(\oI — A)

is dense in H for some Ag > 3. then A is the infinitesimal gencrator of a Cy semigroup
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T'(t) on H satisfying ||T(t)|| < e”*.

2.1. A General Theorem on Well-Posedness. Suppose that X, Y, © and 1}’

are Hilbert spaces, and set Zg = X x ¥ x O x . Let S be a subspace of Y.

suppose we have the following linear operators:
Ao DA CY = Y, 4 :DA4) C X =Y,
G1: DG SO - Y. Gy D(Gy) CY — 0O,
G3:D(G;3) C 0O - 0. DGy S = Y
D:DD)CH = I, 1 X — J: S5 =X

Define 4, C and G by A = AgA;. C = A,Cy and G = AoG,. and define Fg by

,1‘4

D(Fo) = (0 EXNxOx 1V
w

p@<

Define Ag by

T e D(‘ql)o € D(G}).u’ € D(C'l)
Az + GO + Ciuw € D(Ay) -

£ oK

j = .40(.‘1]1' + GIO + Clu,').

T y € SND(G,).0 € D(G3)
= y z
D(A@)'— /] € Zo 'LUED(D),(O ED(FG))
w w
Jy
T I
w(i)-] =2
w 62y+G
yy+ D

Finally, suppose that j is injective and, for A € p(D) N p(G3). define L, : D(Ly) C

5
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X =Y by
D(Ly) = {z € R(j) | (x, A 2, (M = G3)7'G2Aj 2, (M = D) idx)T € D(Ao)} .

T
Lyr = /\Qj'lr — Fo ((/\1 - GS)—IG2)‘j_II> .
(M — D) lidz

We are now ready 1o state the main result of this chapter.
THEOREM 2.2. Suppose
(1) 7 and j~' are continuous.
(2) D(A) is dense in X. S C D(G;) and S is dense in Y, D(G)ND(G3) is dense in
Q. and D.CYN'D(D) is dense in W,
(3) J(S) is closed in X,
(1) Fo. G5 and D are closed.
(3) fory € S ||G2ylle < klljylly for some L > 0.

(6) there exists 3 € R such that (Agz.z), < B8(z.z), forall = € D(Ae).

[S]

(7) there exists A\g > 3. Ao € p(D) N p(G3), such that R(L,,) Is dense in Y. and

(8) (Aol = D)[D(CYND(D))] is dense in W, and (Aol — G3)[D(G)ND(G3)] is dense
in ©.

Then Ag is the infinitesimal generator of a Co semigroup Se(t) on Zg satisfying

[Se(t)]] < €.
PROOF: Set D = D(A)x Sx (D(G)ND(G3))x (D(C)ND(D)). Then D C D\ Ao ) and

Disdensein Zg.so D(Ag)isdensein Zg. Forn =1,2..... let | Y | € D(Ag). and




In T In ¥n

v
Yn y Yn _ Un (8 e ~. TI

suppose | " — 9 and Ag A Ml EPSA Endl IS B oc. Then
W w Wy hn h

Y, € S and jy, = pn — . Since j(S) is closed. there exists ¥ € S such that jy = ¢

But j~! is bounded, so [[g —yll < [ - Iy = wull + flyn —yll — 0 as n — oc.

Iy Ty r
Therefore. y = y: 1.e., y € S and jy = ». Now. <0n > € D(Fo). <0n> — (0 )
wy, wy, w

Iy I
and Fo <0n> = ¢y, — ¥ as n — oc. Since Fg is closed. (0) € D(Fy) and
Wn w

I
Fo (0) = . Since jy, — Jjy and 7 is continuous. we have 75y, — 1jy. We also
w

have ijy, + Dw, — h. Thus. Dw, — h —1jy. But D is closed. so w € D(D) and
Dw = h — ijy which implies that 7jy + Dw = h. Next. A, — 0. 0, € D(G3) and
Gayn + G3bn = 1 — 7. By (5). |G2(yn — y)llo < klliyn = Wllx = klJyn —Jullx —
0, so Gy, — Gy which implies that G308, — 4 — G,y. Since G is closed. # € D(G3)

and G360 = v — Gay. or v = Gay + G30. Therefore. Ag is closed. Finally. let

L R(Aof — Ag): ie..

I
(9, Ao = JY) x + <U’-/\oy - Fo ( 0 >>
w %

4 (7. (Mol = G3)0 — Gay)g + (h. (Mol = D)w — ijy)y =0

> e

for all

R ow N

)\ -1
D(A@) Lel I E D(L)\o ThCﬂ /\ ] - C:}O] é) \0] II E
)\ 1 — IA()I

D(A@), SO <L/',/\Sj_ll‘— F@ ((/\0]—(1': (lo/\n] > = l, LAO ) - 0 for
(Aol — D) Tedor

all £ € D(L,,), which implies v = 0 by (7). If z = = 0 and § = 0. then
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(h, (Aol — D)w)y, = 0 for all w € D(C)N D(D), and hence h = 0 by (8). Now for

T

r € D(A), 8 D(Ao). so (p.Aox)y = 0 for all ¥ € D(A). By (2) this imphes
0 0

that » = 0. Finally, for 0 € D(G)ND(Ga). | § | € 50 (7, (Aol = G3)0) = 0
0

which implies that 4 = 0 by (8). Therefore, R(Aol — Ag) is dense in Zg, and this

completes the proof.

We wish to apply this theorem to thermo-viscoelastic systems (equations (1.2) -
(1.3)) and to the abstract viscoelastic system (equation (1.5)). Before we proceed
with any examples. however. we will make some general comments about the kernel

function g and the space I}

HyproTHESIS 2.3. The function g satisfies the following conditions.
(1) g € L'(~7.0).
(2) g <0and ¢ <0on[-r.0). and

(3) a=7+ [° gls)ds > 0.

Set go(s) = —2g(s). and suppose the space X is given. We will take W to be the

space Lg(—r,O:X) with inner product given by

0
(wy,wy)y = / Gal8) (101(s), wa(s)) y ds.

r

Define the operator D by D(D) = H}(-r.0: X), D = 2 The following lemma is

as

proved in [FI]. Since it is the crucial step which allows a singular kernel, we reproduce

its proof here.




LEMMA 2.4. The operator D is dissipative in \V.

PROOF: For w € D(D),

0 0 1 /° ]
(D = [ 9009 grelshuts) ds=5 [ gls) Tt d

r

Let ¢ > 0 and consider

1 ) .
I 5/_, go(s)gllw(S)ll_x ds

1 ; 1 1 [7¢
= Joa(= e (=0l = Jaa=r el =l = 5 [ bl el

< Y r

1

< 5= [l =)lfy -

Since w(—¢) = f Dw(s = —f Duw(s)ds, by the Cauchy-Schwarz in-

0 d.S 0
lw(=e)ll% S/ . (S)/ 9o (s) | Dew(s)|)% ds.

0 d 0 _
Note that ga(—e)/ * - / 9o 6)ds < ¢. Thus, we obtain
~e 9a(s)  Joc Gals)

equality

1< [ gl Dl d

for all € > 0. Therefore (I'w,w),, = limgoJc < 0. 1
For h € W, if w(s) = ¢€° f; e~?h(o)do, then w € D(D) and (I — D)w = h. Since D
is densely defined, D generates a 'y semigroup of contractions on W by the Lumer-

Phillips Theorem. In particular, D is closed, and A € p(D) for all A > 0.

2.2. A Thermo-Viscoelastic System. We consider the system governed by equa-

tions (1.2) - (1.3) with boundary conditions given by y(t.0) = y(¢t.1) = 6(t.0) =

9




0(t,1) = 0. If weset w(t,s,z) =y(t,2)—y(t+s.x) and use g, as defined above, then

we can rewrite equation (1.2) as

0? a d 0 0 Jd 1
ﬁy(t,r) = - [81‘ (t,r) +/ Jals )Eu( r)ds — —0(1 I)] + ;b(r)u(i).

Define the spaces X. Y and © as follows:
1
X = Hy(0.1) with (x,.202)y = o/ Iy,
Y = L%0.1) with (1. a/ YrY2-
O = LZ(O 1) \\'ith 0] 0’7 Oi/ 0102
Set Zog = X x Y x O x W where W = LZ(—-7.0: X) is as above, and let 5 C ¥ be
given by S = H;(0,1). Define the following operators:
D(Ao) = HY(0.1).  Agy = g-y' €Y.
D(A)) = X, Air=1r"€Y,
W g
a
D(G,) = H'(0.1). Gy = —10y' €0,
D(G3) = HY(0,1)Nn H*(0,1), G360 = k6" € O,
0
D(Cy) =W, Ciwe = / go(s)w'(s)ds € Y,
[iz)(s) =z € W, j:Hy =S8 — X = H} is the identity operator.

With the above definitions, we have

D(A) = HANH?, D(C) = L}(-r.0;D(A)). D(G) = H'(0,1),

10




and the operator Ag is given by

* 1 1 2
_ y y € Hyg.0e Hy NI,
D(.AC-)) - 0 € Z@ 7' — %0+f_()rgo($)1L‘l(S)(15 € ]ll
w

%d% (x' -0+ ffr go(s)w’(s)ds)
=00y’ + 10"
y+ 3

p N
@

E ow R
Il

We now verify the conditions of Theorem 2.2.

(1) Clearly < and j~! are continuous.

(2) Clearly D(A) is dense in X, S C DI(G;) and S is dense in Y. D(G) N D(G3) =
D(G) is dense in ©. and D(C) N D(D) = Hl(~r,0: D(A)) is dense in 11",

(3) Since j(S) = X. j(S) is closed.

(4) We already know that D is closed. It is easy to see that Gs is densely de-

fined and dissipative, and for any 2 € O there exists § € D(G3) such that

Tn
(1 = G3)0 = » (see [K. p. 147]). Thus. G5 is closed. Let <9n ) € D(Fg).
lL‘7L
Ly I Iy In
0. | — [ 6 ). and Fo| 0, | = ¢, — . Observe that Fg | 6, | =
wy w W W,
21 (1‘; - 19,, + [° go(s)w;(s)ds). Now, r, — z in X implies that z/, — z’
odz o' =T

in Y, 0, — 0 in O implies that 6, — 8 in ¥, and w,, — w in 11" implies that
f_or Gols)w; (s)ds — f_or Ga(s)w'(s)ds in Y. Thus, 2/ — lGn + fi go(s)wl (s)ds
o

SR + f_or go(s)uw'(s)ds in Y. Since Ap is closed. Fo is closed.
a

20
(5) It is easy to check that ||G,yii% = 1% JyllZ. Set k= /2% > 0.
./”G) Py a

Q
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(6) For =z = (z,y,0,w)” € D(Ao),

1 /! 0 1
+ = [ (=70y" + x0")0 +/ go(s)/ y'w' + (Dw.w)yy
00 4] -r 0
=k (G30,0)g + (Dw,w)y, <0
since Gy and D are dissipative.
(7) We will take A = 1. Let r € D(Ly). If we set w(s) = (1 — €*)iz. then

(I -=D)w=rir.so (I —-D)lir=(1—-¢*)ir =(1 —€*)z. Note that

d 220 °
L1.‘1‘ = I — —a-— (l" + : 0(1 - G3)_l-l'l +/ ga(s)(l - es)Ids)

c dr

a
d 20
—z-22 (alzr' + u(1 - Gg)_lI,>
odz a
. — 1 0 Asy Jo 1 0 As
where ay = — {a -2 g(s)(1—e )ds} = - [T + [_.g(s)eMds| > 0 for A >
a a
0. Since X C Y, we can think of L, as being defined on a subspace of Y.

Observe that D(L;) = {y € Hj(0,1) | a1y’ + "260(1 - G3) Wy € Hl} is dense

a

in Y. Define the operators T and 1, as follows:

D(Tl)zHl(Oel)t le:y,v

D(Ty) = HY0,1), Ty=y.

Note that T} and T, are adjoint to each other. With this notation we can write

L, as follows:

29
L1=l—gT, a,]+7—(-)—9(1—G3)‘] T.

12




Since G3 = G3, we have [(I — G3)™']" = (] — G3)~!. Thus,

20 -
L=1-2T; [011 FIULCTY Gg)“} T;
g Q

29
-1-21 [011 FRRALLYY g Gg)-l] T, = Ly;
g (84

that is, L, is self-adjoint. Now, for y € D(L,),

! d ' ’\«'200 voy=1_ 7
(hyyh=(ywy—0/——(my+—;%1*60 ¥y ly
0

dr
” 1 20
=yl + a/ (aly' y 2% G3)_13’I> y
0 Q
p) . 2 7200 v =171 1 2
= llylly + e llivlly + — (I = 63) 7'y y"), 2 llylly

since I — G5 > 0 implies that (] — G3)~' > 0. Thus. L, is one-to-one. Hence
by Theorem 13.11 in [R], R(L,) is dense in Y.

(8) Since D(G3) € D(G). we have (I — G3)[D(G)ND(G3)] = (I — G3)D(G3) =
O© from (4). Next. for h € D(C), if we set w(s) = e [ e °h(c)do, then
w € Hi(-r,0:D(A)) = D(C)ND(D) and (I = D)yw = h. Thus, D(C) C

(I — D)[D(C)ND(D)], and D(C) is dense in W.

Since (1) - (8) hold, Ag generates a Cy semigroup on Zg.

2.3. The Abstract Viscoelastic System. Next we wish to apply Theorem 2.2
to equation (1.5). Since the space @ corresponds to the heat equation (1.3), we

first formulate a version of the theorem using only the spaces X, ¥ and W' Set

13




Z =X x Y x W, and define the operator F by

D(F) = {(;) €XxW/|zeDA)weDC) A+ Crw € D(.»i(,)} :
F(I) = Aoz + Cru),

define A by

and define I,\ by
D(Ly) = {z € R(J) | (z. A 'z, (A = D) 'idx)T € D(A)}.
T 2 =1 z
L\.’L:/\_] I_F<(/\]—-D)_]7/\.T>

We have the following special case of Theorem 2.2.

THEOREM 2.5. Assume that all the hypotheses of Theorem 2.2 except those involving
the space © uold. In addition. assume that F is closed. that A satisfies the inequality
in (6), and that there exists Ag > 3, Ao € p(D), such that R (LAO) i1s dense in Y. Then

A generates a Cy semigroup S(t) on Z satisfying ||S(t)|| < €.

PROOF: Let © = {0}, and define G; = 0, G, = 0 (with D =Y)and G3 =

T
0. Define D(Fp) = {(0> E‘\,XQXW‘(ZJ) € DIF } < )
w

X
<y> € D(.A) ./4(.):9 = T.AT—IZ(;

w

and define Ag by D(Ag) = € Zo

g ow XN

14




(and T7' : Zg ~— 7 is given by
u1

I
where T': Z — Zg is given by T ( y) =

R ow N

T
I ~
T-1 g = (y ) ). Note that if we define Ly as before, then D(L,) = D(L,)
w
w
z
—\2:-1. —\2:-1. T ) _ 7
and LI\I—/\] I FG)((A]_]%)_]?AT) —/\] I 1" ((A]—D)-ll/\1‘> L_\I.

It is easy to see that (1) - (8) of Theorem 2.2 are satisfied, so Ag generates a ('
semigroup Se(t) on Zg. Set S(t)z = T7'Se(t)Tz. Then S(t) is a Cy semigroup on
Z whose infinitesimal generator is A. 1

We wish to apply Theorem 2.5 to the equation (1.5). If we set 7°(s) = y — yg and

substitute into (1.3) we obtain an equation of the form

N 0
y+ad [y+/ go(s)ﬂ'(s)do] = f(t). (2.1)

r

We assume that A is a closed, densely defined, positive, self-adjoint, injective linear
operator. As we shall see in the example considered below, these assumptions are
easilv verified in actual applications.

A standard technique (see e.g., [FI]) for reformulating (2.1) as an abstract Cauchy
problem is essentially to set X = D(EVQ) where the inner product on X satisfies

(x1.12)y = <:1’/2I1, :1‘/21'2> and to take the state space to be
v
Z=XxY xL}-r0X),

The approach we take here is similar but it allows more flexibility in the choice of

state space in that X is not necessarily contained in Y, but X will be in one-to-one

15




correspondence with a subspace of Y. We remark that explicit knowledge of the
square root of A is not required; it is only necessary to know that it exists.

With this discussion in mind, let S be a subspace of Y containing 'D(:l). and let
o(-,-) be a symmetric bilinear forin on S such that o(y,,y2) = <a.71y1,y2>y whenever

Y1 € D(Z) and y, € S. Let X be a Hilbert space and j : S — X a bijective linear

operator such that ;7! : X — Y is continuous and (z;,z2)y = o(j7'71.57 2y).
Define A: D(A) C X — Y by
D(A) = {1- € X ]j-’r € D(Z)}. A=—ad; .
With W as defined above, set Z = X x ¥ x 13. Then z(¢) € Z satisfies
d
= 2(t) = A=(1) + col(0, £(1),0),
where A is given by
T y€S, weDD).
D = A ,
A v)e I (z+ /2, gals)u(s)ds) € D(A) [
(2.2)

r Jy
A ( Y ) =1 A (1: + fi gc(s)w(s)ds)
Jy + Dw

THEOREM 2.5. The operator A generates a Cy semigroup on Z.

PROOF: Let A, D and j be as above and consider the operators:

0
D(C) =W, sz/ go(s)w(s)ds:

17
I

1 : X — W given by [iz](s) = «.
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In order to apply Theorem 2.5, we must show that A can be factored as A = AgA4;.
Since A4 : D(:&) C Y — Y is positive and self-adjoint, it has a positive square root
A2, Define Aq and A, by
D(Ay) = D(AM?),  Ag= —aAll?
D(A) ={z € X |jze DAV}, A=AV
Clearly, A = 4pA4;. Set (', = ,415. We now verify the conditions of Theorem 2.2.
(1) Clearly 7 is continuous. By assumption. 77! : R(j) = X — Y is continuous.

(2) Since S 2 D(,:i) and A is densely defined, S is dense in Y. Suppose T L D(A).

Then for all z € D(A).

which implies that <Ey.j-15>y = 0forall y € D(A). But A is self-adjoint and
one-to-one. so 72(71) is dense in Y ([R, Theorem 13.11]). Thus ;7'7 = 0 which
implies that T = 0. Therefore, D(A) is dense in X. Finally, D(C)ND(D) =
D(AC)N D(D) = HL(=r.0: D(A)) which is dense in 1},

(3) Obvious since R(j) = X.

(4) We already know that D is closed. To show that F is closed, let <i" ) € D(F)

n

forn = 1.2,.... let (T"> — (I),and F('T") =y, — y as n — oo. Set
u w U

U = ! <.rn + f_orgc,(s)wn(s)ds) and y = 5! <I+ f_or go(s)u'(s)ds). Then

Yn € D(:i) and —a;@n = F( 5‘" ) =y, — yasn — oc. Since A is closed and

n

o 1/2
13-~ 3lly < {57 lllrn —afly + (/ go(S)dS) llwn = U'IIH} — 0.
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y € DA ) and —aAy = y. But this implies that z +f ga(s)w(s)ds € D(A)
and A (r + ffr go(s)w(s)ds) =y, so F is closed.

(5) Does not apply since R(G,) C O.

w

T T 0
<A<y>,<y>> :(jy,m)/\.+<,4 (:r+/ ga(s)w(s)ds>,y>
w w 7z —r %
0 d
als - uw S d
# [ ot Gy gutsrut)) ds

T
(6) Let <y ) € D(A). Then, using the definition of (-,-),,

by Lemma 2.4.

—
-1
~—

T
Again we take A\g = 1. For z € D(L,;), < ]'—‘Tq € D(A), and
(1 —-€e%)r

0
Lr=j"1c2-A (T +/ als)(1 — es)1d<> =j 'z —a, A7

'

where a; > 0 is as defined above. Define T by
D(T)={ye S|jyeD(L,)}. T=1I+a A

It is easy to see that D(A) = D(T) and R(T) = R(L,). By the Cauchy-Schwarz
Inequality. for y € DIT). Ty}l - Jll 2 |{Tw.)| = Iy + asa (Ay.y) > ol
which implies ||[Ty|| > ||y|l, and so T is one-to-one. Also. T = T so R(T) is
dense in Y.

(8) The proof that (I — D)[D(C) N D(D)] is dense in W is the same as the proof
given in Section 2.1. §
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EXAMPLE. A viscoelastic shaft with tip-mass.

Consider a viscoelastic shaft of length { fixed at one end and with a tip-mass at
the free end. The equation describing the motion of the shaft (sece [BMC] where the

kernel g(s) is assumed to be in H!) is

. a[a

0 a ‘
Uat,_,y(i.l) =5 7 2.Y y(t, I)+/ g(s )81 (t+ s,z)ds } + b(x)u, (1), (2.3)

while the boundary conditions are given by
y(t.0) = 0. (2.1)

9" J 0 s,
Im—a?y(t.l) = - [ 5— y(t.l) + / g(s)a—xy(t +s,1)dsJ + us(t). (2.5)

r

Here y is thie angular displacement. o is the product of the density of the shaft with
its polar moment of inertia. 7 is the product of the shear modulus and the polar
mosent of mertia. 7, is the moment of inertia of the tip mass, and the delay r > 0

is assumed to be finite. Let Y = R x L%(0,!) with

2 {
Y 0

2
Iyl = ”(U

Then (2.3) - (2.5) can be written as

- 0
j+ 7 {m/ <s>ybd«] _ ()




Clearly, D(Z) is dense in Y. Let (Z')E D(Z) Then

9 ‘ 2
> - (7 ) >0
2+ ol? I\
~ 2 ~ -~
Thus, A is positive and m ( ) < HA(Z') H . H <Z) . so - is one-to-one

(and A~ is continuous). Let (21 ),( 2) € D(A). Then
1

I} !
A 72 — ! i _ Wl — W
<A(L‘1 )'(L‘2>>~L‘(l)”(1) /0 Yt /0 (SR

—~

so 1 is symmetric. Let (g) € Y. Define w(z) = /0 [[lat‘(f)d§+1m§] dt.
Then (‘ri”) € D(A). and A <L£’)> - (g) so R(A) = ¥. Therefore, by
Theorem 13.11 in [R], A* = A. Finally, D(A™1) = R(A) = Y, so 47! is closed,
and hence A is closed. Now let § = {(g) ey { ve H00). v(l) = «} and

define o ((Z;) (ZZ)) = a/lu';?;"z for (Z,i), (Zé) € S. Then. S 2 D(A) and
‘ 0

~

o(y1.y2) = <a,:1y1.y2>)‘_ whenever y; € D(A), y» € S. Let X = H}(0,1) with

/

I,.T3)y = @ 7' 20, and define j : § — X by j vy} 2 . Clearly 7 is a
X 0172 '9//'

bijective linear operator. and

I
(ry.12)y = Q/O rry =0 ((1‘;(]1)) , <I;(21)>) =0 (j 71,77 1,).

Forre X. Hj”r”f, = I.2%() + afolac2 < (2—’”%—&) |5 Th-s.j~" is continuous.
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Now, define Z = H}(0,1) x R x L*(0,1) x L}(=r,0; H}(0,1)) with

S\ :
Z/) :a/( Nt Iyt +U/ Wt / ga(s) / <—u(a)) dads.
w/llz
and define
@ v e H(0,0), ¥(l)=1.
D(A) = Z ezl w € Hi(— 7011{(01)) :
w (#(2) + [°, gals)Zu(s,a)ds) € H'(0.1)
(¥
7 =2 [P0+ 12, guls)Zus. ds)
A v ] T s [ x) +f (8)Zw(s r)ds] .
w o 3r \p —rgci </ or S “J
Ut 5

The operator A generates a Cy semigroup on Z by Theorem 2.5.

3. Approximation. In this section we consider the problem of finding approximate
solutions to equations of the form (1.1). Let S{¢) be the Cy semigroup generated by
A. We construct a sequence (Z", P, A") where Z" is a finite dimensional subspace
of Z, P} is the orthogonal projection of Z onto Z", and A" generates a 'y semigroup
S™(t) on Z". We then show that S™(t)P}: — S(t)z as n — oo for all = € Z using
the following version of the Trotter-Kato theorem which follows from Theorem 4.2 in

[P. Chapter 3].

THEOREM 3.1. Let A € G(M.3) be the infinitesimal generator of a Coy semigroup
S(t) on a Hilbert space Z. Forn = 1.2,..., let Z" be a finite dimensional subspace
of Z such that P" =5 ] as n — oo where P is the orthogonal projection of Z onto
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Z". Suppose

(Hi) A € G(M. 3) is the infinitesimal generator of a Cy sermigroup S™(t) on Z™ for
n=1.2,....and

(H2) forall z: € Z. (Al = A®)7'P"z = (M — A)7 'z as n — oc.

Then for all = € Z. S"(t)P"z — S(t)z as n — ¢, and the convergence is uniform on

bounded t-intervals.

We would like to construct a convergent approximation scheme for the thermo-
viscoelastic system considered in Section 2.2. Nevertheless, for the approximation
scheme and convergence proof presented below. we restrict our attention to the ab-
stract viscoelastic svstem (equation (1.1)) for which the operator A4 1s given by (2.2).
The convergence proof for the complete thermo-viscoelastic system involves a modifi-
cation of the proof we give here and can be found in the thesis [L]. This modification is
rather technical. and vet is a straight forward extension of the proof we present below.

Therefore. in order to conserve space we present onlv the proof for the viscoelastic

model. If we define the operator Ag: D(4) C X xY — X x Y by

D(Ao):{(;)eXxY":rED(A), yes},

H(y) = (5).

then we can write A in the form

w




which suggests a two-stage approximation of A: We first approximate Ag by discretiz-

ing the spatial variable, typically by means of spline functions. We then approximate

ow . - : : . :

EN by discretizing the delay variable. In this paper we will use an averaging scheme
$

for the second stage. We follow the construction given in [F1] except that we do not

require a uniform partitioning of the interval [—r,0].

Let us now proceed with the first stage of the approximation. Define the bilinear

form og(-.-) on X' x § by

1 £ _ 1y L 1
GO<(y1)’<yz>>“"(3’“J x2) — o (J7 1. y2)

where ¢ is the bilinear form on S discussed in Section 2.3. Observe that for (‘;1> c
1

D(A,) and (fjj) € X xS,

I L2 — Ty T2
(63 G) = (G- G2)
Now for each positive integer N, let X~ and Y be finite dimensional subspaces of X
and Y with Y~ C S, and define W/ = L;(—T.D; XN). We define 4y : XV x V'V —

XN x YN by restricting oo to XV x YV e,

(AN ™ o)

_ N N N N - yN o uN
/\,x),._ao(u M) forutiet € X7 x Y

Now set ZV = ¥V x YN x 1N and define A" : D(AN) C Z¥ — ZV by




For each positive integer A partition the interval {—r,0] into subintervals [t} ¢¥ ],

7 =1,2,.... M, where

—r=th<tii_ < <t <t) =0 (3.1)

We will say more later about how the ¢} are chosen. Set a}f = 3, =M for j =

1,2...., M, let \,3&/ denote the characteristic function of [t?’, t‘ﬂl) for y = 2,.... M,
and let \} denote the characteristic function of [t77,0]. Let BM(¢). 7 = 0.1,..... \

be the usual linear spline functions satisfying B,‘”(i‘;") = 6,;. Define the finite dimen-

sional subspaces W * and WM of 1V by

_ A ,
WV {w €W l w= 3 a\. o € .\’“} \
1=1

A
w= S bMBM, oM ¢ X‘V} .

=1

ANAM . TNM BNA L. PANAMNA M M MY M
Define D : W - by DMy = Yoo o (BM, = 0M)\ M where

1=1 q-
M — .
wNM = Y M BM and b = 0. Define the isomorphism (M : WM, V.M
1=1

. . M ’ 7 LY
by ZN,Alw.’\f.l\l — Zi:] bl,”Xf” Now define D]\,/\I . H/)\.AI — I,VN,A! b} DA”V —

= A N -1 ) . . 14 - - N . N
DM (VMY To complete the approximation, set ZNM = XN 5 ¥V x WEM

, . . : T A\
and for z¥M = (z¥. .y, w™M) € ZVM | define

H N 0 N.AM S
ANMNM AQ [<;\> + /,,90(3) (w 0 (‘)) ds]

]’y}\' + DN,)\IwN,,\I
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wVM = ZU’M M then

AI
xf\' .1' + Z gC' 1
1o 1=1
A;’\'.,’\I NN — N
A ’\l _ w!\l

jy* +Z M

I”

where (g,)M = ' gal(s)ds.

In order to prove convergence of this approximation scheme. we must impose con-
ditions upon the spaces X~ and YV and upon the partitions of [~r.0]. Thus, we
make the following assumptions:

(A1) Let Py and P be the orthogonal projections of X and Y onto XV and YV,
respectively. Then P_'\y -, Iy, and P)‘}' -2, Iy where [y and Iy are the identity
operators on X and }'. respectively.

(A2) For each positive integer M let IIY = {t‘J” l;=0.1,..... \1} be a partition of !
[—7,0] satisfying (3.1), and set AM = {1.2,...,M}. Then there exist positive

constants €;, €; and C independent of M such that AM = \” U \” where
AV {] € \AI ’ a:;\f S r_}\j—(l'i'fl)/z}'

: C
If j € AY, then (go)” < —, and A} contains at most M=% elements of AM.

M
Furthermore, OJMI(QO)M < (qo);’,o” for j =2.3,....0M. and if j € AM, then
1,2,.... j—1eA)
. A —Jr : . M r
EXAMPLE 3.2. Suppose (' = 5YE for j = 0.1.....: \[. Then o} = 7 for all




] € AM so (A2) is satisfied with ¢, = 1, ¢,,C > 0 arbitrary since Aé" = § and
A M
(90)3 < (90)700-
EXAMPLE 3.3. Let ¢ = [° o(8)ds, and suppose that the tM are chosen so that
J.. 9 pp 3

(ga);! €y = % the

- 1
M 2

partition TI'M satisfies (A2) for all positive integers M.

We will refer to these partitions as the “uniform mesh” and the “non-uniform mesh,”
respectively. The non-uniform mesh of Example 3.3 is the partition suggested by
Fabiano and Ito in [FI]. The convergence proof we give below is a modification of the
proof given in [FI]. The major difference is that we must handle each estimate in two
parts: one where the length of the interval is small (in this case our argument is the
same as that of Fabiano and Ito), and the oth.r where the integral of ¢ is small.

Let PJ* denote the orthogonal projection of Z onto ZV-*. In order to apply

z g pPro) Pp:)
- NAM s 7
Theorem 3.1. we must show that P; 'S, 1, as VM — x. Forz = (z.y.w)T € Z.

N.M v N var AT N S .

P, = (P_',‘. . Py P u‘) . where P, is the orthogonal projection of 11" onto

1WN-M Since we assume (Al) it is sufficient to show that P = Iy,

LEMMA 3.4. Forallhe W. Pa™Mh — has N M — o.

PROOF: For w € W and t € [-7,0]. set w™(t) = Pgw(t), and define w™ by

' Y
wNM () = 5w (B )\ (1). For w € D(D?)

1=1

. ‘,’\‘,,\I‘ < ” . ,\'H PN ‘N‘MH
Hu u ln' < llw—w u'+||“ u W

where the first term on the right-hand side tends to zero by the Dominated Con-
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M . 4 14 12
vergence Theorem. We write the sccond term as Hu“\ - w‘\"”“‘ Sy + S where

rj)

Z / o(8) [ (s) = 'LUA'\'(t;\_’])”i, ds for 7 = 1.2. Following Fabiano and

;\I\!

Ito (but replacing 7/Af. the length of each interval using the uniform mesh. by
r/MO+6)/2) e get

} 5 1 ; 3

SpSrlD2elly M3 (srms) = 0as A =

3 ‘\](l+(1)/2

Now. for s € [—7.0].

9 2 0 ‘
. (2 ]. -
Huv--‘<s>!|_x51|u~<s)n§=|/ Duw(§)dg| = / V/ga(€) Duw(€)d
s X s go(é) 5y
0 1 0 . , T N
< [ st [ oDl de < s Dy
Thus.
G <2 Z/" () [l Il + e eI ds
lEAU
ir nDuHu / o ArC | Dl o
STl 2 BN S T D

Hence, for w € D(D?). ||uw — Pi;\:””u

. S Hu — u,'N‘MH”, + HP“::'M(w - 114"\"”)“”’ <

2 Hu - w VHH — 0 as N. M — . Since D(D?) is dense i 117 and HP‘\ ”" < 1.

'
l

“/1 ~ P VhHw —0as V.M — ocforall hell’.

From Theorem 2.5 we know that 4 € G(1.0). In order to show that AV € G(1.0)

for all N, M. it is sufficient to show that ANM is dissipative in Z%Y since ZVY is
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N M
. . . ; . !
finite dimensional. Let z¥ = ( y ) with wMM = S~ wMyM. Then
w 1=

A
M
(ANMNM NMY o 2V + 3 (ga)M ] :z:;/’
~ 4~ - 1 ’
zZ 1= N Y
Y

LY

0 < ;_ —w; M > |
+/ 9ol 3 1y +Z Zu ds
RY

= %(90);\, <u'{‘\—’1 u,” x”>x

i=1 !

A1
€ 31020 [ty el =

1 M ]\1 57
s§; el =l
-3 S o (e - ) - i, 4] <0
214 ’ Qi Q; T @y

where we used the Cauchy-Schwarz Inequality and the inequality 2ab < a? + b*. and
from (A2) the fact that (g.)M /oM, < (g.)M /e Mifori=1,2,...,M — 1. Thus, we

have established the following result.
LEMMA 3.5. If ANM s as defined above, then ANM € G(1,0) for all N, M.

All that remains to be done in order to establish convergence is to show that (A —

: : @
ANMY=1p¥M o (Al — A)"'z for all z € Z. 'or Red > 0 and = = <w>, consider
h
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T
the equation (A — A)7': = ( y ) or cquivalently,

w

AL — Jy = &, (3.2)
0 .
Ay — A <1‘ + / go(s)u'(s)d.s) = . (3.3)
e
Aw —jy — (_u = h. (3.4)
s
From (3.4). = f MS=O(5y + h(£))dE, and from (3.2), jy = A\r — ;. or y =

Aj 7'z —;7'p. Substituting into (3.3) and using a, as defined above and the fact that

f;) AeMS-8dE =1 — ¥ we obtain

0
A%j7lg - A (O,\I—/ ga<s)w-Dr‘[;—h(s>st) v+ (33)

r

If we define A(X) = A%j7! — lA (T + f_or e’\sg(s)ds) = A%?j! — a,A. then for 7 €
a

D(A),
0
ANz =w+ 4570 = 4 [ g o)A = D) s = hs)lds.
;.’\"
Now, let P; Mz ={ V¥ |.and consider the equation (A — A™ My PZ\ M: =
h.’\',}\f

N
T .
( gV\M ) If we define AY : XV — YV by <4‘4‘\‘l"\'~y'\ >)-’ = —o (7 'z .y"). then it

/N N /N .
is easy to see that Ay (;\> = ( 1]\3/ \') for (;\> € XV x ¥V, Thus. we have
AN
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the equations

Azt — jyN = o0 (3.6)
Af
Ayt — A (r“ + 3 (ga)tu ,“) =" (3.7)
v=1
. 1
At — gyt — —rr(wly —wl) = A fori=1.2.....41, (3.8)
Af
where w E wM M and ANM = S RAM\M From (3.3).
i=1

) A Y’ N \Yi
A . Mo C ] I .
( + Q;'u) w; O;’\lux-—l +Jy
or
u',‘” =(1+ a,‘-\’/\)_l [u';‘_fl + Q;” (jy'\. + /z;”)] fori=1.2..... .

v _ -} .
where w§’ = 0. By induction. u¥ = ¥ [H (1+a}A) IJ ar’ (jy¥ + 4). From

k=1 =k

(3.6). jy~ = A2z — Y which implies y¥ = Aj- 12~ - ;7' Substituting into (3.7)

we obtain

\2~~1 — AN (I +)‘Z (9a); w liH(l'J"Qi”’\)-lJ o’,:’r‘\)
k=1

k=1

By induction, A 1 [H (1+ o;",\)—lJ ol =11 (1 +a} )\) . Define

M :
A.’\',M(/\) = A%jm1 4N {l 1 Z(ga);"l (1 — H (l + OQ’,\)‘I)J .

k=1

R M 1 0 r
Then. since Y (g,)M = ~_./ g(s)ds = — — 1.
af_, a

1=1

. ‘ 1. 0
ANM () = A2 5_4,\ [7. +/ gls)eM (A, s)dSJ (3.10)
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where

M Z(H (1+a'y) 1)\;."(5).

1=]1 k=1

Let (AJ — DNM)™H (N — pNM) = zg”\, Then

M A
. , . . 1 1
QN _ h.\,M — (Al _ D!\,M) Zé;\l\‘:\! — Z [\5"\1 . u_” (‘f,\_ll _ E,V) \,M
1=1 =1 H
which implies PN - h;” = /\f,‘w - u—lw (f - {”) forz =1.2...... Vl. Thus, {;” =

(1+ /\o;’”)_l [{;‘_’1 +aM(p" = lz;\’)]. or. by induction.

& = Z {H (1+ )\o;\’)_l:| ay (N = h).

k=1 L!=k

0 Af Af
Now. / gal(s) Zé;\l\;\l _ Z(go);”&"v .
- =1 =1

r

0
/ gal(s) ()\1 _ D.\'..\l)—l (,;N . h,\',_\l) ds

A 1 :
= (g0) [H(H/\az")"’} ol (oY — BMY. (3.11)

1=1 k=1 Li=k

Therefore. from (3.9), (3.10) and (3.11) we obtain
0
AN = u"’%\f‘;"_AA'/ Gals) (M = DYMYTH(Y = pNM) ds. (3.12)

In order to complete the proof of convergence, we must show that z¥ — z, y¥ — y

and 'U)N"‘I

— w as N. M — oc. First we need the following lemmas.

LEMMA 3.6. For A >0, (A\[ = D¥M)™' PYMp 5 (AT = D)="h for all h € W.

PROOF: Let w = (M — D)™'h and u™M = (A - DN‘M)_1 P“?i"\lh. Set @M =

(NM)=1wNMM and take oM [ P‘\ M (Dw)dE. Tt now follows that
[ (@M j‘\"'\l)“w <A ”P‘f::,)\l (i — i}\-}la‘]\'u’kl)”u'. (3.13)
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Now,
N A ANA ~ A A ~N A N AM~NA
||1u—z N 'H , < Hw—u' ’” ,+||w L o ’” ,
W= " "
where
S 2
~NAMI? N
||w —w Hu' = “/ [Dw - Py (Dlt‘)] d¢
0 W

72.

=3

12
Duw — P (Dw)'lw S 0as V.M — x

Af
. SN A
by Lemma 3.4. If we set Py (Dw) =3 EM\M then we get

H{I‘f\'..\l _ I\ A

M, , " ﬁ
:Z/\{ gals) S‘zA”H_\' (5—1;\’)2(15251 + S,.
.

1=1 '

To estimate the term S, we again follow Fabiano and Ito (replacing the term 7/

by r/AM+6)/2) to get |Dwl|li — 0 as M — oc. Define the norm ||-||;

1
S S T
A[1+6

Zx\llf\l ’\IH‘ ds =

Forw et

’ L

5 ; z °
on W by H“'”f = ff’r lw(s)lly ds. Then ”P{;\-'M(D“-‘)Hl = /
At M

[ - B

=1 vtl.\l X 1=1 A

2 ° 2 1 ’ 1 2
el = [ el b £ = [ guts) ol ds = s el

and so. for all j,

<
17 ga

oM ||eM])} < “P[ (D)

— [P, < = IDwli-

Thus. for s € [ff'.t” “f”H t”) (03”)2H§3”H2\. < ——(r )HDU'”fv'
: go(—T
Hence,

\l

" . R 2
— 1Dl / auls)ds < Pl €

go(—r) M

<25

\

— 0 as M — oc,
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and so Hw — VMG ”“H — 0as N, A — oc. Thus. from (3.13) it follows that

Hw‘\"" MG ”““ — 0 as N, M — oc. Therefore,

. ,N,.\IH H . ~,\'.A\1AN,AI”
“u. w W < ffw—1 w W

NA N A NoA ,
|| PO R ’“W—»Oas N M s oc. 8

0

LEMMA 3.7, For A > 0. / Ja () ‘6'\3 - C'\’(,\.b’)‘ ds — 0 as M — oc.

r

PROOF: By definition of ¢ (\. s).

0 Af (M
v A1 -
(L—,(S)IE'“ —e " (As)|ds = E
-T 1=1 I-M

1

e — H (1+ 05"/\)_1 ds

=1
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Let AM = {1.2,.... n} and suppose s € [{*" 0]. Then for some i € A} M < s <M,
. . . ! €
which implies that e™” < €% < My 50 0 < M Ml < MY (e*"-“ - 1) <3
But. tM = — 2i<r ;" which implies
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Now. €' = (1 4 Ao + - (Aa™)? for some £ between 0 and aM. Set a; =
J *) J J J J
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(1+ XaM) and b, = 3(“\51 (,\()f’y. Then
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We are now ready to prove the main result of this section.

THEOREM 3.8. Forall z € Z. ¢A™ "'P\ M S(t): as N, M — oc. uniformly on

bounded t-intervals.

PROOF: As remarked above. we have only to establish (H2) of Theorem 3.1. Fur-
thermore, it is sufficient to show that r¥ — r. If we define the bilinear forms
pl-) on X by plry.ry) = N (j7'r 7 r)y + ay(r1.22) (it is easy to verify

that pu(ry.12) = (A(Nry.xg), if 7y € D(A)). and pM) on XY by uMzyir) =
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<A‘V"”(A)rl,j"12>,, , then for r;,2, € X7,

|uM (21, 12) = p(z1, 12)

0
< (/ Ja(s) |6«\s _ e-“(/\,s) ds) Izl -zl (3.14)

and for r € X,

WMz, o) =2z f +ay|lz]l% - (3.15)

By (3.3). we have for all u € X,

plrou) = <L' + A7 ey '1'11>).

4]
+o <J / gu (VAT = D) (2 - /z(s))d.s.j"u> ,

and by (3..2). for all u™ € XV,
pMzV o) = <z;‘N + )‘j—lp.\"j-xlt,\'>),

0
4o (]'—1/ go(s) (/\] _ 1).’\'1&[)_1 ('*r”N _ hf\",_’\f(s)) ds.j—]u}\'> )

r

Let 7V = P{r. Then, taking u = «¥ = 2V — 2" in the above two equations. we get
GMEN Z VN -
< |pMEN -2 7Y =2+ V(22 = 2Y) - p(e T - )
T RN L B e R [ e N

'(,\1—1))-‘(,;—1;)

[¢]
+/ gals)

— (A= DM P (o — h)

’.\’ ds - ||31\N - .’I‘NHX :

If we set a}f = ! (T + f_org(s)f.‘“(,\,s)ds), then by Lemma 3.7. a}! > 0 for M large
a

enough. Estimating the right-hand side of the above equation and using (3.14) and
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N

from (3.15) the fact that a, [|2V - & |'\ < pM(FN - 2N TV — 2N, we get

I+ - ¥

~0

< (I @) el + ([ alo)]e =] el

1
Qay
0 1/2
el ([

) H(/\[ _ ]))—1(\; . ll) . (/\1 _ D‘\'UU)—IP{;\:‘AI(‘I; —_ ll)Huy] — 0

T e = e A

as V.M — oc by Lemmas 3.0 and 3.7. s0 Hz - .z"\vll — 0as N.M —oc. 1

X

We are interested in applying this approximation scheme to the optimal LQR prob-
lem. but it is well known that convergence of the forward problem (i.e., Theorem
3.8) is not sufficient to ensure convergence of the gain functionals (see [G], [BIP]).
Convergence of the adjoint semigroups as well as other properties (uniform stabiliz-
ability, etc.) play a central role in the development of convergent methods for LQR
problems. If ¢(+) € L*(—r.0) then Z can be re-normed by using the weight €(s) = 1

in place of g(s). If Z, denotes the resulting equivalent space, one can establish the

following adjoint convergence (see [M] for a proof).
THEOREM 3.9. If g(s) € L?(~r.0). then for each = € Z,.

C[AN'M] ’P;;“”: — S*(t): as N, M — oo.

Morcover, this convergence is uniform on bounded t-intervals.

Recently, K. Ito has announced [I] a proof of this result that does not require the

additional assumption that ¢(-) € L?(~7.0). In general. the question of preservation
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of stabilizability uniformly under these approximations is not answered. However, for
certain special forms of ¢g(-) and for problems with additional damping terms (Kelvin-
Voigt), one can establish uniform stabilizability. More will be said about this problem

in the next section.

4. Numerical Results. We turn now to an optimal control problem governed by
the basic thermo-elastic equations with viscoelastic and Kelvin-Voigt damping terms.

For a rod of length 1 the equations of motion become

7 (t 9 liaz202 0 +l/0 0 st +s.2)d 322
— ) = — T)ds — .
popyltr) = 5= 1A+ 2u 5. )+ _rg(S)aIy( s, ataly( r)
a
—0(3,\+2;1)5—$-0(t.1)+b(1‘)u(t) (4.1)
—?—O(t ) = O—OO(t ) — G (3N + 2u) - (t,x) (4.2)
peg Ot 1) = Ko 0(t 1 ba(: 21) 5oyt 2
where for 0 < J < +2c. the teim Ja e -y(t.z) provides Kelvin-Voigt damping. If

3 = 0 and g(s) = 0. then (4.1) - (4.2) become the classical equations of thermo-
elasticity. If ¢g(s) # 0 satisifies Hypothesis 2.3, then the integral term provides a type
of “viscoelastic damping™ to the system.

Gibson. Rosen and Tau [GRT] considered the problem with g(s) = 0 and with
Dirichlet boundary conditions on displacement and Neumann boundary conditions
on the temperature. In this case it can be shown that the thermo-elastic model (i.e..
8 = 0 and g(s) = 0) has zero as an exponentially stable equilibrium. provided of
course that one subtracts out the constant temperature distribution. Moreover. the

elastic and thermal modes decouple. and one can use modal expansions in analyvzing
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this system. Therefore, if 3 = 0 and ¢g(s) = 0, then (4.1) - (4.2) with Dirichlet-
Neumann boundary conditions is exponentially stabilizable (again, after “subtract-
ing~ the constant temperature states), and the standard LQR control problem has a
unique solution. The same clearly holds for the corresponding systems with 3 # 0
and g(s) # 0.

We shall consider the more complex problem governed by (4.1) - (4.2) with Dirichlet
boundary conditions on displacement and temperature. In particular, we impose the

boundary conditions
y(t.0) =y(t.1) =0=0(t.0) = 0(+.1). (1.3)

If 5 >0, then (4.1) - (4.3) is exponentially stable. If 3 = 0 and g¢(s) satisfies the

basic assumptions in Section 2 with

1 0
(O:(,\+2/1)+B/ g(S)dS>0. (4'4)

then it is known that (4.1) - (4.3) has zero as a globally asyvmptotically stable equi-
librium (see [W.pp. 203-210}). It is important to observe that, in general, results of
this type do not extend to problems in two or more space dimensions. If 3 = 0 then
1t 1s st2ll not known if (4.1) - (1.3) 1s exponentially stable. There are positive results
for infinite delay problems with completely monotone kernels g(-) (see [HW]).
Recently Hanson [H] has shown that for 3 = 0 and g(s) = 0, the open loop
eigenvalues of (1.1) - (1.2) are bounded away from the imaginary axis. However. the

eigenfunctions for this problem do not form a Riesz basis for the natural state space,.
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and hence the question of exponential stehility remains unresolved.

These theoretical issues can have considerable impact on computational algorithms
and need 1o be addressed in order to complete the convergence theory for control
applications. Some progress has been made for the thermo-viscoelastic problem with

kernels of the form

g(s) = = /pv/=s. (4.

1]
~—

for ¢ > 0. p > 0 (see [L}). although no results exist for the classical thermo-elastic
model 3 = 0. ¢(s) = 0. In summary. if 3 > 0 or g(-) has the form (4.5) with
(4.4) satisfied. then (4.1) - (1.3) is exponentially stable (hence stabilizable), and if
J =0 = g(s). 1t is not known if (4.1) - (1.3} is stabilizable.

We shall present several numerical experiments for LQR control of i4.1) - (4.3)
with various values of J and b when ¢(-) is given by (4.3). The numerical constants
are chosen to be the same as used in ;GRT] for an aluminum rod of length 1. In

particular.
p=9.382x1077 A =2.06x10"".

p=1.11x107", a=129x10"3.

c=540 x 1071, K =T7.02x10"".
0y = 63. q = 30.
p=1 r=1.

Observe that for these values. the constant ~ = a(3A+24) takes the value 1.085x 1073,
i /

and hence the coupling between (2.1) - (2.2) is "small.” Note also that the kernel
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(4.5) has a weak singularity at s = 0. We sclected constants 4 = 1.8 x 1077 and
b =6.0 x 10* so that the first elastic mode has open-loop damping of the same order
of magnitude as the classical thermo-elastic model. The control input function b(z)

is given by
{1, 4 < < 435

0, elsewhere,
and is the same as used in [GRT].
The LQR problem for the system (4.1) - (4.3) is to choose a control function wug(t)

to minimize
J = /x [E2(2) + (1)) dt (4.6)
0

where £(t) is defined by

17 ; 2 1 2 1 1/2
S(t):{p/o {gzy(t,z)} d.r+co/0 [O_B:r_y(t'I)J dz-f—al(; ; [O(t.:r)]zdx} ,

and y(t,z), 0(t.z) is the solution to (4.1) - (4.3) with initial data

y(0.2) = yo(x), Zy(0.2) = vo(7).8(0,2) = To(z)
y(0,2) —y(s,x) = we(s, ).

For g(s) defined by (4.5) and b > 0 such that (4.4) holds, there exists a unique

optimal control law in feedback form

1
ug(t)zeo/ —1\1( ) y(t, ) (Ir—rp/ No(z dr-f——/ N3(z dr
o e 0

1 . d
- E/—r/o [5;1\,,(3,2)] [Ey(s.x) - — ]g )dxds. (4.9)




If g(s) = 0 and 3 > 0, then again there exists a unique optimal control law in
feedback form (4.9) with ¢g(s) = 0 = Ny(s.r). If 3 = 0 and ¢(s) = 0. then the
most one can say is that if an optimal control exists, then it will have the form (4.9)
with g(s) = 0 = N,(s.x). The existence of the optimal control has not vet been
established. We had hoped that the numerical results presented below would shed
some light on this question. lHowever, as will hecome evident from these numerical
experiments, we seem to have raised more questions than we have answered.

The objective of the computational sclieme is to produce numerical approximations
of the optimal functional gains Ny(:). N,(-). N3(-) and N,(-.-). In particular, the
general idea is to introduce an approximation method (such as in Section 3). and
then to use this method to compute approximating (sub-optimal) gains K (-), A5 ().
K(-) and K} (-, ). The basic questions are 7) Do the optimal gains exist? and i)

Does the particular approximation scheme lead to convergence of the sub-optimal

gains; i.e., does N:¥ (1) — N(-).1=1,2,3,4 as N — oc?

The computational results presented below are based on the numerical approxima-
tion scheme presented in Section 3. We used the non-uniform mesh as described by
Example 3.3 for the thermo-viscoelastic model. In particular, all runs presented below

were based on M = 8 subdivisions of [—1,0]. and the corresponding approximating

finite dimensional system becomes

N = AN () + BV (1) (4.10)




where BV® = P‘;"gb’ and B: R' = Z is defined by Bu = (0.b(x)u,0.0)7. The results
are the same for M = 16 sub-divisions of [—1.0] (a nice feature of the non-uniform
mesh algorithm).

In the cases where 1) holds, Theorems 3.8 and 3.9 imply convergence of the func-
tional gains provided one can establish that this scheme preserves stabilizability uni-
formly in .V (see [G]). For the thermo-viscoelastic model with g(-) given by (4.5) and
the thermo-elastic model with 3 > 0. preservation of stabilizability can be shown.

In order to see the effect of the damping models on the open-loop system. in Figure
1 we plot the open-loop poles for the first 8 clastic modes using only thermal damping
(i.e., 3 =0, g(s) = 0), thermo-viscoelastic damping (7 = 0, ¢(s) given by (4.5) and
b = 6.0 x 10*) and Kelvin-Voigt damping (.3 = 1.8 x 1077), respectively. Observe
that the damping is extremely small in all three cases. On the other hand. Table 1
shows that at the higher frequencies the damping provided by the thermo-viscoelastic
model is an order of magnitude more than the thermo-elastic model, and the damping
predicted by the Kelvin-Voigt model is two orders of magnitude greater than the

thermo-elastic model.

42




Elastic Thermo-Elastic Thermo-Viscoclastic Kelvin-Voigt

Mode 3 =0=g(s) b=6.0x10* 3=18x10""
1 —0.0000054 + 6.5S: —~0.0000091 + 6.58: —0.0000093 + 6.58:
2 —0.0000060 + 13.17¢ —0.0000184 + 13.17: —0.0000216 + 13.172
3 —0.0000071 + 19.79: —-0.0000325 4+ 19.79: —0.0000423 + 19.79%:
4 —0.0000086 + 26.47: —0.0000501 + 26.47: —0.0000713 + 26.472
5 —0.0000106 + 33.20: —0.0000699 + 33.20¢ —0.0001095 + 33.20:
6 —0.0000129 + 40.02: —0.0000905 + 40.022 —0.0001566 + 40.02:
7 —0.0000157 + 46.93: —-0.0001113 + 16.93: —0.0002133 + 46.93:
8 —0.0000189 + 53.95: —0.0001317 + 53.95: —0.0002800 + 53.95¢
9 —0.0000224 + 61.10: —0.0001514 + 61.10¢ —0.0003574 + 61.102
10 —0.0000263 + 63.39: —0.0001705 + 63.39: —0.0004460 + 68.39:
15 —0.0000491 + 107.5: —0.0002565 + 107.52 —0.0010866 + 107.52
20 ~0.0000662 + 151.5¢ —0.0003257 + 151.5: —0.0021294 + 151.5¢

TABLE 1. OPEN LOOP POLES; SMALL DAMPING

We also considered cases where b = 6.0 x 102, b = 6.0 x 10" and 3 = 1.8 x 1073,
3 = 1.8 x 10, The models with 3 = 0 and b = 6.0 x 10% and 3 = 1.8 x 1074,
g(s) = 0 show considerable increases in open-loop damping (especially at the higher

modes) as illustrated in Table 2.
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Elastic Thermo-Elastic Thermo-Viscoelastic Kelvin-Voigt
Mode 3 =0=g(s) b=6.0x10° 3=18x10"°
1 —0.0000054 + 6.58: —0.0003812 4+ 6.572 —0.0003931 + 6.582

2 —0.0000060 + 13.17: ~0.0012338 + 13.162 —0.0015617 + 13.172

3 —0.0000071 4 19.79: —0.0025453 + 19.7& —0.0035214 + 19.79:

1 —0.0000086 + 26.47¢ —0.0041601 - 26.45: —0.0062913 + 26.47:

5 —0.0000106 + 33.20: —0.0059423 + 33.19: —0.0098982 + 33.20:

6 —0.0000129 + 40.02: —0.0077757 + 40.00: —0.0143768 + 10.02:

T —0.0000157 + 16.93¢ —0.0095789 + 16.91¢ —0.0197699 + 46.93:

3 —0.0000189 + 53.95: —0.0113034 + 53.93: —0.0261290 + 53.95:

9 —0.0000224 + 61.10: —0.0129269 + 61.08: ~0.0335142 + 61.102

10 —0.0000263 + 63.39: ~0.0144449 + 638.371 —0.0419944 + 68.3%

15 —0.0000491 4 107.5: —0.0207916 + 107.5: —0.1038004 + 107.52

20 —0.0000662 + 151.5: ~0.0260228 + 151.5¢ —0.2063817 + 151.52

TABLE 2. OPEN LOOP POLES: MEDIUM DAMPING

The LQR problem for the approximating system (4.10) is solved (by Potter’s
method) and approximating functional gains N;¥(-), K3 (-), K3 (-) and K (-.) are
constructed by the standard Galerkin scheme (see [M] for details). Convergence of
these sub-optimal functional gains as .\ — oc to the optimal gains can be established
for 3 > 0 and ¢g(s) = 0 by methods similar to those in [G]. If g(s) is defined by (4.3),
then this convergence can be established by a modification of Ito’s recent results [I].
Nothing is known about the classical thermo-elastic problem. We treat this problem

numerically.

Example 4.1. In this problem we set g(s) = 0 = 3 and compute the gains K (-).
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N (-) and A (-). Note that the finite dimensional system (4.10) is exponentially
stable (all open-loop poles are in the left half plane) so that these sub-optimal func-
tional gains do exist. Figures 2, 3 and 4 contain the plots of V(). 7 = 1,2,3 for
N =24, 28, 32 and 36. Although these plots are similar to those found in [GRT],
and for the boundary conditions in [GRT)] one can prove convergence of the gains,
it is not clear from Figures 3 - 4 that these gains are converging. We will return to

this issue later.

Example 4.2. In this problem we consider the thermo-viscoelastic problem defined
by 3=0and b = 6.0 x 10!, b = 6.0 x 1U-. ligures 3, 6 and 7 contain the plots of
1\';\'(-), i =1.2,3 for N = 24, 28, 32 and 36 where b = 6.0 x 10'. Figures 8, 9 and
10 contain the same plots for b = 6.0 x 102. Observe three important features: 1)
For b = 6.0 x 10! the system is more heavily damped than for b = 6.0 x 10%; i) the
functional gains for the case b = 6.0 x 10" are smoother than for b = 6.0 x 10% and
11) the convergence of the functional gains is faster in the problem with the most
open-loop damping. The plots of A¥(-, ) for b = 6.0 x 10" and N = 24, 28, 32 and
36 are shown in Figures 11 - 14. Note that these gains converge rather rapidly. This

was typical of all the thermo-viscoelastic runs.

Example 4.3. In this problem we consider only the thermo-elastic model with
Kelvin-Voigt damping so that g(s) = 0 and 3 = 1.8 x 107* and J = 1.8 x 107°.

Figures 15, 16 and 17 contain the plots of KN(+). 7 = 1.2.3 for N = 24, 28, 32 and 36

-
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for 3 =1.8x 107, and Figures 18, 19 and 20 show the same plots for 3 = 1.8 x 107°.
Observe that as in Example 4.2 above, the damping affects the smoothness and rate of
convergence of the functional gains. Also note that when 3 = 1.8 x 107° the first elas-
tic mode has the same damping factor (i.e., open-loop pole is —0.00039 4 6.58¢) as the
problem in Example 4.2 with b = 6.0 x 10? (i.e.. open-loop pole is —0.00038 + 6.587).

Figures 21, 22 and 23 contain the plots of N'J?(-) for the thermo-elastic and thermo-
viscoelastic models and the thermo-clastic model with Kelvin-Voigt damping for var-
ious values of b and J. The functional gains for the thermo-viscoelastic problem
“converge” to the functional gains for the thermo-elastic problem as b — . The
same convergence applies as the Kelvin-\oigt parameter 3 — 0. As ilustrated in
Figure 23. the functional gain A'7*(-) computed by using the thermo-elastic model is
the same as the gain computed by using the same model with Kelvin-Voigt damping
parameter .3 = 1.8 x 107", Likewise. if b = 6.0 x 10* in the thermo-viscoelastic model,
then the functional gain A7%(-) is also identical to the gain computed by using the
thermo-elastic model. This “basic” observation applies to A'**(-) for i = 1,2,3 and for
K8 (-) also. In particular, as shown in Figure 24, the functional gain K'$(-) computed
from the thermo-elastic model is remarkably close to the functional gain computed by
adding Kelvin-Voigt damping. Although convergence of the functional gains for the
thermo-elastic model with Kelvin-Voigt damping is assured by theory, Figures 23 and
24 illustrate that this convergence can be extremely slow if the damping parameter
3 is small.
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Figures 23 and 21 also raise the possibility that even in the thermo-elastic problem
(no structural damping) where there is no proof of convergence, the gains might
converge if .\ is sufficiently large. The jagged nature of A¥(-) occurs because of the
small damping. Moreover. comparing the open-loop and closed-loop poles. one sees
that the optimal feedback law introduces considerable damping at all frequencies.

Figure 25 compares the first 8 open-loop poles (+) to the closed-loop poles (*) for
the thermo-elastic model. It is interesting to note that the same pattern holds for
all of the higher poles (see Table 3 below). and the thermal damping alone does not

appear to be a major aid in controlling the higher modes.

Mode Open-Loop Closed-Loop
1 —0.0000054 + 6.33: —0.1078901 + 6.58:
2 —0.0000060 + 13.17: —0.0552142 + 13.17¢
3 —0.0000071 + 19.7% —0.0792251 + 19.7%
1 —0.0000086 + 26.471 —0.0953368 + 26.47:
5 —-0.0000106 + 33.20: —0.0298920 + 33.20:
6 —0.0000129 + 40.02: —0.1097076 + 40.02:
n —0.0000157 + 46.93: —0.0264249 + 16.93:
S —0.0000189 + 53.95: —0.0946383 + 53.95:
9 —0.0000224 + 61.10: -0.0742450 + 61.10:

10 —0.0000263 + 63.3% —0.0549855 + 68.39:
15 —0.0000491 + 107.52 —0.0707290 + 107.52
20 —0.0000662 + 151.5: —0.0731157 + 151.5:

TABLE 3. OPEN-LOOP \'S. CLOSED-LOOP POLES

THERMO-ELASTIC MODEL
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As illustrated by Figures 26 and 27, the first 8 closed-loop poles for the moderately
damped (Kelvin-Voigt) thermo-clastic and the thermo-viscoclastic models are essen-
tially the same as the corresponding closed-loop poles for the thermo-eclastic model.

In view of these numerical results, we first conjectured that although no theoretical
results exist to prove the existence of the optimal feedback gain for the classical
thermo-elastic mode] (with boundary conditions (4.3)), existence and convergence of
the suboptimal gains do hold. Sinice the damping for the realistic model is so small.
the numerical evidence provided by the previous plots is not strong. In order to test
this conjecture we investigated the convergence of the gains for the problem with
“artificial” parameters. In particular, we considered the equatiions in dimensionalless

form

o .0 0

d—-t';y(f-,i') = ——812y(t’1) - ‘75;0(@'1) + b(z)u(t)
7, 0 , 0°

b—tﬂ(t,.r) = 76?0(1'..7:) —c 7ataxy(t,.r)

with b(z) as above and ¢ = 4 = 1.0. The uncontrolled system has considerable damp-
ing. The first two elastic modes have eigenvalues —.0939 + 3.15¢ and —.4066 + 6.477,
respectively. The functional gains for this set of parameters are slightly smoother
than the corresponding gains for the aluminum rod. Figures 28, 29 and 30 show the
“convergence” of these gains for .V = 24,28,32 and 36. It appecars that the scheme
may produce convergent gains (at least for A;¥(-) and '3 (+)): however. the behaviour

of K} (+) is not clear-cut. Based on our numerical experience, we do conjecture that
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the classical thermo-elastic model with Dirichlet boundary conditions is in fact stabi-

lizable. However, we also conjecture that the computational scheme does not produce

convergent gains (we believe that this scheme does not preserve stabilizability uni-

formly). We have not been able to provide proofs of these conjectures. and we leave

them as open problems.
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Open Loop Eigenvalues, N = 32

55 v , - -
SO g
L
45k \ 5
10 t ‘
IS¢ .
30t | -
l |
|
- Thermoelastic i
ZOI» - Thermo- Viscoclastic T -
- Kelvin-Voigt 1 ;
sk \SE
* \
10t \ w
‘ Il
5t . , ‘ *
-3 25 2 -1.5 -1 -0.5 0
Figure 1 xi0+

K1, Thermoclastic, N = 24, 28, 32, and 36

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1




K2, Thermoclastic, N = 24, 28, 32, and 36

100 v T T 1

-100

T

0 - 01 0.2 0.3 0.4 0.5

Fignre 3

K3, Thermoclastic. N =24, 28, 32, and 36

O.SV A T AS il ¥

0.6 0.7 0.8 0.9 !

0.6}

0.6+

14 1

0.8 : ' : NI
0 0l 02 03 04 05

Figire

53

0.6 0.7 03 0.9 !




x10-} K 1. Themno-Viscoclastic, b = 60, N = 24, 28, 32 and 36
8 r . v v — . . v
r
6k
4k

1+ \\ *E
6[- \ 4}
sk / i

\ £ ;
10}- _/' -;‘
12 —

0 0.1 0.2 0.3 0.4 0.5

Figire 5

w

0.6

0.7

0.8

K2, Thermo-Viscociastic, b = 60, N = 24, 28, 32 and 36

o
<

-

T

| PU—

0.1 0.2 0.3 0.4 0.5

Fige 6

0.6

0.7

0.8




K3, Thermo-Viscoclastic, b = 60, N = 24, 28, 32 and 36
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K2, Thermo-Viscoclastic, b = 600, N =24,28,32and 36
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o] K3. Kelvin-Voigt Damping, beta = 1.8¢-4, N = 24, 28, 32, and 36
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K2, Kelvin-Vuigt Damping, beta = 1.8¢-5, N = 24, 28, 32, and 36
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Open vs. Closed Loop, N = 32, Kelvin-Voigt Damping, beta = 1.8¢-5
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K2, Gamma=1.0, N = 24, 28, 32 and 36
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